

15.11.2023 Evangelia Antoniou & Michael Dworzak

The unknown diagnostic tool of MRD in pediatric AML

Moderation: Andishe Attarbaschi

COI declaration

• No conflincts

Paediatric Cancer (ERN PaedCan)

Case -previous history

- 15 y.o. male
- First diagnosis: June 2021 de novo AML M5, CNS positive
 genetics: t(11;19), normal karyotype
- No other comorbidities
- Family history: negative

Case -previous history

- 15 y.o. male
- First diagnosis: June 2021 de novo AML M5, CNS positive
 genetics: t(11;19), normal karyotype
- No other comorbidities
- Family history: negative

<u>Standard-risk group</u>				
Definition	All patients with the following evidence:			
	 Inv(16)(p13.1q22) 			
	 t(16;16)(p13;q22) 			
	 t(8;21)(q22;q22) 			
	• t(1;11) (q21;q23)			
	Normal karyotype and NPM1-mutation			
	 Normal karyotype and CEBPA (double mutation) 			

Intermediate-risk group

Definition All patients with de-novo AML, who do not belong to the standard-risk group (favorable prognosis) or to the high-risk group (unfavorable prognosis).

igh-risk group

Definition	All patients with the following genetic evidence:
	 abnormalities in chromosome 12p/ t(2;12)
	monosomy 5/5 q-
	WT1mut and FLT3-ITD
	 monosomy 7 (not in combination with favorable/MLL- aberrations)
	 t(4;11)(q21;q23); MLL/AF4
	 t(5;11)(q35.3;p15); NUP98/NSD1
	 t(6;11)(q27;q23)); MLL/AF6
	 t(10;11)(p12;q23); MLL/AF10
	 t(6;9)(p23;q34)
	 t(7;12)(q36;p13)
	 t(9;22)(q34;q11)
	 complex karyotype (three or more aberrations, including at least one structural aberration, without favorable
	genetics and without MLL-rearrangement.)
	 inv(3)(q21q26.2)/t(3;3)(q21;q26.2)

- t(16;21)(p11;q22); FUS/ERG
- Inv(16)(p13.3q24.3) CBFA2T3-GLIS2

Case-therapy

Network Paediatric Cancer (ERN PaedCan)

- Therapy: June 2021-April 2022
 - CNS positive ———— Cranial Irradiation 23.12.2021-06.01.2022

Question 1

Network Paediatric Cancer (ERN PaedCan)

Which methods are part of diagnosis of AML?

- 1. Morphology and Karyotype
- 2. Morphology, Genetics(RNA, NGS) and Karyotype
- 3. Morphology, Flow cytometry and Genetics (RNA,NGS) and Karyotype

Case - MRD marker

Paediatric Cancer (ERN PaedCan)

- Examination in our outpatient clinic in April 2022
- detection of t(11;19) (Fusion: KMT2A::ELL)

peripheral blood

bone marrow

Case-Therapy

Network Paediatric Cancer (ERN PaedCan)

molecular

relapse

INTERNATIONAL MULTICENTER, OPEN-LABEL, PHASE 2 STUDY TO TREAT MOLECULAR RELAPSE OF PEDIATRIC ACUTE MYELOID LEUKEMIA WITH AZACITIDINE

DNA-methylation inhibitor

Paediatric Cancer (ERN PaedCan)

Case-Therapy

Paediatric Cancer (ERN PaedCan)

Case-Therapy

Question 2

aediatric Cance

How should be MRD evaluated?

- 1. MRD positivity is equal to relapse
- 2. Importance of MRD kinetics for diagnosis of relapse
- 3. MRD signals are detected only in leukemic blasts

Case-Therapy

VOUNG

Case report- HSCT complications

Day + 31: Katheter Infection: Staphylococcus epidermidis (Tazobac resistant) - Antibiotics change to Meropenem/Vancomycin

Day +36: Fever, tachycardia Pulmonary distress Anurie -> Renalfailure Multiorgan failure: renal and pulmonary failure

Toxopla	sma gondii	PCR	positiv

Staphylococcus aureus	PCR	negativ
Streptococcus pneumoniae	PCR	negativ
Enterococcus faecium	PCR	negativ
Enterococcus faecalis	PCR	negativ
Escherichia coli	PCR	negativ
Klebsiella pneumoniae	PCR	negativ
Klebsiella oxytoca	PCR	negativ
Klebsiella aerogenes	PCR	negativ
E. cloacae Komplex	PCR	negativ
Serratia marcescens	PCR	negativ
Pseudomonas aeruginosa	PCR	negativ
Stenotrophomonas maltophilia	PCR	negativ
Candida albicans	PCR	negativ
Candida glabrata	PCR	negativ

Question 3

How to prevent transplant related mortality (TRM)?

- 1. Reduce toxicity by detection of molecular relapse and early intervention
- 2. Standartise screening for microbiology and virology in order to start with antibiotics/antiviral therapy early
- 3. Prompt antibiotics and antimycotic prophylaxis
- 4. Treatment by experienced intensive care staff
- 5. All of the above

for rare or low prevalence complex diseases

Network Paediatric Cancer (ERN PaedCan)

DISCUSSION

Take home messages

- Different relapse kinetics of MRD
 - MRD persistence after therapy for CBF
 - rapid relapses in subgroups of MLL
- No standard therapy for molecular relapse yet defined but in order to avoid TRM at HSCT: early diagnosis and lower intensity treatment Avoid HSCT if not indicated! Consider the complications!
- Refine stratification and response assessment
- Optimisation of viral and microbiological screening/prophylaxis during HSCT

Literature

FRN PaedCan

- Karlsson et al., Fusion transcript analysis reveals slower response kinetics than multiparameter flow cytometry in childhood acute myeloid leukaemia. Int J Lab Hematol. 2022
- Ommen et al., Strikingly different molecular relapse kinetics in NPM1c, PML-RARA, RUNX1-RUNX1T1, and CBFB-MYH11 acute myeloid leukemias. Blood. 2010
- Ommen et al. Relapse kinetics in acute myeloid leukaemias with MLL translocations or partial tandem duplications within the MLL gene. Br J Haematol. 2014
- Sockel et al. Minimal residual disease-directed preemptive treatment with azacitidine in patients with NPM1-mutant acute myeloid leukemia and molecular relapse. Haematologica. 2011
- Viehmann et al. Monitoring of minimal residual disease (MRD) by real-time quantitative reverse transcription PCR (RQ-RT-PCR) in childhood acute myeloid leukemia with AML1/ETO rearrangement. Leukemia. 2003
- Maurer-Granofszky et al. Genomic breakpoint specific monitoring of measurable residual disease in pediatric non-standard risk acute myeloid leukemia. Haematologica. 2023

